Tag Archives: hydrogen

REB Research periodic table cup

Some 20 years ago I designed this periodic table cup, but with only the 103 named elements that existed then. In part this was done because I wanted a good, large, white coffee cup, in part because I often found I needed a periodic table, and didn’t like to have to look one up, and in part to people how much more area you get on a cylinder than on a flat sheet (roughly 3.14 times more area). To show that, I put all the side elements (rare earth lanthanides, and actinides) where they belonged, and not off on the side. I also put hydrogen in twice, once as a metal (HCl) and once as a non metal (NaH). The color I chose was Tryian Blue, a key color of Biblical Tyre, what you get from male purpura mollusks (the females give a shade of red that I also try to associate with REB Research).

I’ve updated the cup to add more elements: I think it’s great. You can buy it for $30 through our web-site, or for $25 by e-mailing me (reb@rebresearch.com/blog/). Or if you do something really cool, I may send you one for free.

REB Research, Periodic table coffee cup

REB Research, Periodic table coffee cup

By the way, I only use 4 digits for the atomic weight; I can think of no application where a normal person needs more.

 

 

How and why membrane reactors work

What follows is a shorter, easier version of my old essay on how membrane reactors work to get you past the normal limits of thermodynamics. Also, I’m happy to say, our membrane reactors designs have gotten simpler, and that deserves an update.

At left, is our current, high pressure membrane reactor design, available in one-tube to  72 tube reactor assembly; high pressure, or larger, I suppose. Typically, the area around the shell is used for heat transfer. One needs to add heat to promote endothermic reactions like methanol reforming CH3OH + H2O –> 3H2 + CO2, or ammonia cracking 2NH3 –> N2 + 3H2. You need to take away heat from exothermic reactions, like the water gas shift reaction, CO + H2O –> CO2 + H2. Generally you want to have some heat transfer to help drive the reaction.

The reactor is a shell containing metallic tubes that filter gas. Normally the idea is for hydrogen to be formed in the shell area, and leave by diffusion through the tube walls and down the tubes, leaving as pure hydrogen (only hydrogen can go through metals). We typically suggest to have the reactor sit this way, with the tubes pointed up, and the body half-filled or more with catalyst. According to normal thermodynamics, the extent of a reaction like ammonia cracking will be negatively affected by overall pressure, and the extent of the WGS reaction is only affected by operating temperature. The membrane reactor allows you to remove hydrogen while the reaction progresses, and allows you to get good conversion at higher pressures too. That’s because hydrogen removal shifts the equilibrium so the reaction goes further. The effect is particularly significant at higher pressures. By combining the steps of reaction with separation, we can operate a higher pressures, delivering ultra high purity, avoiding the normal limitations of thermodynamics.

The water-gas reaction, CO + H2O –> CO2 + H2, deserves special mention since it’s common and exothermic. In a normal reactor, your only option to drive the reaction to near completion is by operating at low temperature where the catalyst barely works, 200 °C, or lower. You also have to remove the heat of reaction. In a membrane reactor, you can operate at a much higher temperature, especially if you work at higher pressure. At higher temperature the catalysts work better, and you don’t have to work so hard to remove heat.

At our company, REB Research, we sell membrane reactors; and catalysts, membrane tubes, and consulting.

Hydrogen addition to an automobile engine

Today, I began a series of experiments putting hydrogen into my car engine. Hydrogen is a combustion promotor, increasing the flame speed significantly, even at low compositions, and it has a very high octane value, so it does not cause pre-ignition. I used my Chevy Malibu, shown, and generated the hydrogen using one of our (REB Research’s) methanol-reformer hydrogen generators. I used a small hydrogen generator we sell for gas chromatographic use, and put 280 ccm hydrogen into engine, as shown. This is enough to provide 1% of the energy content about during idle.

I’ve not measured mpg change yet (as a stationary experiment the mpg is 0), but was really looking for outward signs of knock or other engine problems. Adding 280 ccm of hydrogen should increase the flame speed by ~2%, which should increase the degree of high pressure combustion, and this should increase the mpg by about 3% or 4% if you don’t include the hydrogen energy. So far, I saw no ill effects: no ill sounds and no check engine lights.

H2_boost_in_Buxbaum_Malibu

Hydrogen added to a Chevy Malibu engine at REB Research

About half the hydrogen energy comes from waste heat of the engine, and half the methanol. Either way this energy is very cheap: methanol costs about $1.20/gal, about half of what gasoline does on a per-energy basis.  Next step is to make my hydrogen generator mobile, and check the effect on mpg. I’m glad it worked OK so far. There was a reporter watching.

Big new hydrogen purifier ships

We shipped out our largest hydrogen purifier to date on Thursday, one designed for use in hydrogen-powered airplanes. I’m pretty happy; lots of throughput, light weight, low pressure drop, quite durable. We had a pizza party Friday to celebrate(if we didn’t invite you, sorry). I’m already working on design improvements (lessons learned) in case we get another order, or another, similar customer. I think we could do even better in our next version.

Largest hydrogen purifier to date pressure test

Here is our latest hydrogen purifier to date being pressure tested. Output is 650 slpm; that’s 40 m3/hr, 3.5 kg/hr. The device is tied down for burst-pressure testing behind a blast fort, just in case the thing bursts during tests. So far, no failures, no leaks. I sure hope the customer pays.

here's our largest H2 purifier being burst-pressure tested

here’s our largest H2 purifier being burst-pressure tested

New hydrogen generator for gas chromatographic use

Shown below is our latest product: a lower cost hydrogen generator, designed for use to provide the carrier and flame gas for gas chromatography. It’s our highest pressure, lowest hydrogen output product, outputting hydrogen at up to 90 psi. The output is still higher than any other generator in the GC space, and the purity is greater; 99.99995%, good enough to be used as the carrier gas, not just the detector gas. Fairly low price too.http://www.rebresearch.com/
Photo: Our latest new product: a lower cost, hydrogen generator for use with gas chromatography. It's our highest pressure, lowest hydrogen output product, but the output is still higher than any other in the GC space, and the price is less at that purity. </p><br />
<p>http://www.rebresearch.com/
As always, the hydrogen is made from methanol-water reforming in a membrane reactor, but we did a couple of things differently from previous designs. We closed up the front more so you don’t stick your fingers where they don’t belong. We also have a more-transpartent tank so you have a better idea what the liquid level is. The use of the membrane reactor is why our hydrogen is purer; we go through a metal membrane and our competition, (Porter, etc) uses only a desiccant.