Category Archives: Health

In praise of openable windows and leaky construction

It’s summer in Detroit, and in all the tall buildings the air conditioners are humming. They have to run at near-full power even on evenings and weekends when the buildings are near empty, and on cool days. This would seem to waste a lot of power and it does, but it’s needed for ventilation. Tall buildings are made air-tight with windows that don’t open — without the AC, there’s be no heat leaving at all, no way for air to get in, and no way for smells to get out.

The windows don’t open because of the conceit of modern architecture; air tight building are believed to be good design because they have improved air-conditioner efficiency when the buildings are full, and use less heat when the outside world is very cold. That’s, perhaps 10% of the year. 

No openable windows, but someone figured you should suffer for art

Modern architecture with no openable windows. Someone wants you to suffer for his/her art.

Another reason closed buildings are popular is that they reduce the owners’ liability in terms of things flying in or falling out. Owners don’t rain coming in, or rocks (or people) falling out. Not that windows can’t be made with small openings that angle to avoid these problems, but that’s work and money and architects like to spend time and money only on fancy facades that look nice (and are often impractical). Besides, open windows can ruin the cool lines of their modern designs, and there’s nothing worse, to them, than a building that looks uncool despite the energy cost or the suffering of the inmates of their art.

Most workers find sealed buildings claustrophobic, musty, and isolating. That pain leads to lost productivity: Fast Company reported that natural ventilation can increase productivity by up to 11 percent. But, as with leading clothes stylists, leading building designers prefer uncomfortable and uneconomic to uncool. If people in the building can’t smell an ocean breeze, or can’t vent their area in a fire (or following a burnt burrito), that’s a small price to pay for art. Art is absurd, and it’s OK with the architect if fire fumes have to circulate through the entire building before they’re slowly vented. Smells add character, and the architect is gone before the stench gets really bad. 

No one dreams of working in an unventilated glass box.

No one dreams of working in a glass box. If it’s got to be an office, give some ventilation.

So what’s to be done? One can demand openable windows and hope the architect begrudgingly obliges. Some of the newest buildings have gone this route. A simpler, engineering option is to go for leaky construction — cracks in the masonry, windows that don’t quite seal. I’ve maintained and enlarged the gap under the doors of my laboratory buildings to increase air leakage; I like to have passive venting for toxic or flammable vapors. I’m happy to not worry about air circulation failing at the worst moment, and I’m happy to not have to ventilate at night when few people are here. To save some money, I increase the temperature range at night and weekends so that the buildings is allowed to get as hot as 82°F before the AC goes on, or as cold as 55°F without the heat. Folks who show up on weekends may need a sweater, but normally no one is here. 

A bit of air leakage and a few openable windows won’t mess up the air-conditioning control because most heat loss is through the walls and black body radiation. And what you lose in heat infiltration you gain by being able to turn off the AC circulation system when you know there are few people in the building (It helps to have a key-entry system to tell you how many people are there) and the productivity advantage of occasional outdoor smells coming in, or nasty indoor smells going out.

One irrational fear of openable windows is that some people will not close the windows in the summer or in the dead of winter. But people are quite happy in the older skyscrapers (like the empire state building) built before universal AC. Most people are nice — or most people you’d want to employ are. They will respond to others feelings to keep everyone comfortable. If necessary a boss or building manager may enforce this, or may have to move a particularly crusty miscreant from the window. But most people are nice, and even a degree of discomfort is worth the boost to your psyche when someone in management trusts you to control something of the building environment.

Robert E. Buxbaum, July 18, 2014. Curtains are a plus too — far better than self-darkening glass. They save energy, and let you think that management trusts you to have power over your environment. And that’s nice.

US cancer rates highest on the rivers, low in mountains, desert

Sometimes I find I have important data that I can’t quite explain. For example, cancer rates in the US vary by more than double from county to county, but not at random. The highest rates are on the rivers, and the lowest are in the mountains and deserts. I don’t know why, but the map shows it’s so.

Cancer rate map of the US age adjusted

Cancer death rates map of the US age adjusted 2006-2010, by county. From www.statecancerprofiles.cancer.gov.

Counties shown in red on the map have cancer death rates between 210 and 393 per 100,000, more than double, on average the counties in blue. These red counties are mostly along the southern Mississippi, the Arkansas branching to its left; along the Alabama, to its right, and along the Ohio and the Tennessee rivers (these rivers straddle Kentucky). The Yukon (Alaska) shows up in bright red, while Hawaii (no major rivers) is blue; southern Alaska (mountains) is also in blue. In orange, showing less-elevated cancer death, you can make out the Delaware river between NJ and DC, the Missouri heading Northwest from the Mississippi, the Columbia, and the Colorado between the Grand Canyon and Las Vegas. For some reason, counties near the Rio Grande do not show elevated cancer death rates. nor does the Northern Mississippi and the Colorado south of Las Vegas.

Contrasting this are areas of low cancer death, 56 to 156 deaths per year per 100,000, shown in blue. These appear along the major mountain ranges: The Rockies (both in the continental US and Alaska), the Sierra Nevada, and the Appalachian range. Virtually every mountain county appears in blue. Desert areas of the west also appear as blue, low cancer regions: Arizona, New Mexico, Utah, Idaho, Colorado, south-west Texas and southern California. Exceptions to this are the oasis areas in the desert: Lake Tahoe in western Nevada and Lake Meade in southern nevada. These oases stand out in red showing high cancer-death rates in a sea of low. Despite the AIDS epidemic and better health care, the major cities appear average in terms of cancer. It seems the two effects cancel; see the cancer incidence map (below).

My first thought of an explanation was pollution: that the mountains were cleaner, and thus healthier, while industry had polluted the rivers so badly that people living there were cancer-prone. I don’t think this explanation fits, quite, since I’d expect the Yukon to be pollution free, while the Rio Grande should be among the most polluted. Also, I’d expect cities like Detroit, Cleveland, Chicago, and New York to be pollution-heavy, but they don’t show up for particularly high cancer rates. A related thought was that specific industries are at fault: oil, metals, chemicals, or coal, but this too doesn’t quite fit: Utah has coal, southern California has oil, Colorado has mining, and Cleveland was home to major Chemical production.

Another thought is poverty: that poor people live along the major rivers, while richer, healthier ones live in the mountains. The problem here is that the mountains and deserts are home to some very poor counties with low cancer rates, e.g. in Indian areas of the west and in South Florida and North Michigan. Detroit is a very poor city, with land polluted by coal, steel, and chemical manufacture — all the worst industries, you’d expect. We’re home to the famous black lagoon, and to Zug Island, a place that looks like Hades when seen from the air. The Indian reservation areas of Arizona are, if anything, poorer yet. 

Cancer incidence map

Cancer incidence,age adjusted, from statecancerprofiles.cancer.gov

My final thought was that people might go to the river to die, but perhaps don’t get cancer by the river. To check this explanation, I looked at the map of cancer incidence rates. While many counties repress their cancer rate data, the pattern in the remaining ones is similar to that for cancer death: the western mountain and desert counties show less than half the incidence rates of the counties along the southern Mississippi, the Arkansas, and the Ohio rivers. The incidence rates are somewhat elevated in the north-east, and lower on the Yukon, but otherwise it’s the same map as for cancer death. Bottom line: I’m left with an observation of the cancer pattern, but no good explanation or model.

Dr. Robert E. Buxbaum, May 1, 2014. Two other unsolved mysteries I’ve observed: the tornado drought of the last few years, and that dilute toxins and radiation may prevent cancer. To do science, you first observe, and then try to analyze.

Is ADHD a real disorder

When I was in school, ADHD hadn’t been invented. There were kids who didn’t pay attention for a good part of the day, or who couldn’t sit in their seats, but the first activity was called day-dreaming and the second “shpilkas” or “ants in your pants.” These problems were recognized but were considered “normal.” Though we were sometimes disorderly, the cause wasn’t labeled a disorder. It’s now an epidemic.

There were always plenty of kids, me included, who were day-dreamers. Mostly these were boys who would get bored after a while and would start to look around the room, or doodle, or gaze into space thinking of this or that. Perhaps I’d do some writing or math in the margin of a notebook while listening with one ear; perhaps I’d work on my handwriting, or I’d read something in another textbook. This was not called a disorder or even an attention deficit (AD), but rather day-dreaming, wool-gathering, napping, or just not paying attention. Sometimes teachers got annoyed, other times not. They went on teaching, but sometimes tossed chalk or erasers at us to get us to wake up. Kids like me took enough notes to do OK on tests and homework, though I was never at the top of the class in elementary or middle school. The report cards tended to say things like “he could do better if he really concentrated.”  It’s something that could apply to everyone.

Then there were the boys who would now be labeled HD, or “hyperactive disordered.” These were always boys: those who didn’t sit well in their chairs, or fidgeted, or were motor mouths and got up and walked about, or got into fights, or went to the bathroom; these were the class clowns, and the trouble makers — not me except for the fidgeting. Girls would fidget or talk too, and they’d pass notes to each other, but they didn’t get into fights, and they weren’t as disruptive. They tended to have great handwriting, and took lots of notes in class: every single word from the board, plus quite a bit more.

There are different measures of education, if you measure a fish's intelligence by the ability to climb a tree it will spend its life thinking it's stupid.

There are different measures of education, if you measure a fish’s skill level by the ability to climb a tree you’ll conclude the fish is ADD or worse.

Elementary and middle schools had activities to work out the excess energy that caused hyper-activity. We had dancing, shop, fire drills, art, some music, and sports. None of these helped all that much, but they did some good. I think the fire drills helped the most because we all went outside even in the winter, and eventually we calmed down without drugs. Sometimes a kid didn’t calm down, got worse, and did real damage; these kids were not called hyperactive disordered, but “bad kids” or “juvenile delinquents.” Nowadays, schools have far less art and music, and no shop or dancing. There are a lot more hyperactive kids, and the claim nowadays is that these hyperactive kids, violent or not, are disordered, ADHD, and should be given drugs. With drugs, the daydreamers take better notes, the nappers wake up, and the hyperactive kids calm down. Today about 30% of high-school seniors are given either a version of amphetamine, e.g. Adderall, or of Methylphenidate (Ritalin, etc.) The violent ones, the juvenile delinquents, are given stronger versions of the same drugs, e.g. methamphetamine, the drug at the heart of “breaking bad.”

Giving drugs to the kids seems to help the teacher a lot more than it helps the kids. According to a famous joke, giving the Ritalin to the teacher would be the best solution. When the kids are given drugs the disorderly boys (it’s usually given to boys) begin to act more like “goodie goodies”. They sit better and pay attention more; they take better notes and don’t interrupt, but I’m not sure they are learning more, or that the class is, or that they are socializing any better than before. The “goodie-goodies” in elementary school (mostly girls) did great in the early grades, but their good habits seemed to hold them back later. They worked too hard to please and tended to not notice, or pretended to not notice, when the teacher said nonsense. When it came time for independent or creative endeavors, their diligent acceptance of authority stood in the way of excellence.Venn diagram of ADHD

The hyperactive and daydreamers were more used to thinking for themselves, a prerequisite of leadership. The AD ones had gotten used to half-ignoring the teacher, and the HD ones were more openly opinionated and oppositional: obstreperous, in a word. Those bright enough to get by got more out of their education, perhaps because it was more theirs. To the extent that education was supposed to make you a leader and a thinker, the goodie-goodie behavior was a distraction and a disorder. This might be expected if education is supposed to be the lighting of a fire, not the filling of a pit. If everyone thinks the same, it’s a sign that few are thinking.

Map  of ADHD variation with location for US kids ages 6-18, Scrips Research.

Map of ADHD variation with location for US kids ages 6-18, Scrips Research. Boys are 2-3 times more often diagnosed as ADHD; diagnosis and medication increase with grade, peaking currently in early college.

This is not to say that there is no such disorder as ADHD, or no benefit from the drugs. My sense, though, is that the label is given too widely, and that the drugs are given too freely. Today drugs are pushed on virtually any kid who’s distracted, napping or hyperactive — to all the members of the big circles in the Venn diagram above, plus to athletes and others who feign ADD to get these, otherwise illegal, performance enhancing drugs. Currently, about 10% of US kids between 6 and 18 are diagnosed ADHD and given drugs, see figure. The numbers higher for boys than girls, higher in the US than abroad, and higher as the kids progress through school. It’s estimated that about 25% of US, 12th grade boys are given amphetamine or Ritalin and its homologs. My sense is that only a small fraction of these deserve drugs, only those with severe social problems, the violent or narcoleptic: those in the smaller circles of the Venn diagram. The test should not be that the kid’s behavior improves on them. Everyone’s attention improves when taking speed. ADHD appears more as an epidemic of overworked, undertrained, underfunded teachers, and a lack of outlets, not of disordered kids, or of real learning, and real learning is never pretty or easy (on all involved).

Robert Buxbaum, April 18, 2014. In general, I think people would be happier if they’d do more artmusicdance and shop, and if they’d embrace their inner weirdo. It would also help if doctors and teachers would use words rather than initials to describe people. It’s far better to be told you’re hyperactive, or that you’re not paying attention, then to be called ADD, HD, or ADHD. There’s far more room for gradation and improvement. I’m not an expert, just an observant observer.

Genetically modified food not found to cause cancer.

It’s always nice when a study is retracted, especially so if the study alerts the world to a danger that is found to not exist. Retractions don’t happen often enough, I think, given that false positives should occur in at least 5% of all biological studies. Biological studies typically use 95% confidence limits, a confidence limit that indicates there will be false positives 5% of the time for the best-run versions (or 10% if both 5% tails are taken to be significant). These false positives will appear in 5-10% of all papers as an expected result of statistics, no matter how carefully the study is done, or how many rats used. Still, one hopes that researchers will check for confirmation from other researchers and other groups within the study. Neither check was not done in a well publicized, recent paper claiming genetically modified foods cause cancer. Worse yet, the experiment design was such that false positives were almost guaranteed.

Séralini published this book, “We are all Guinea Pigs,” simultaneously with the paper.

As reported in Nature, the journal Food and Chemical Toxicology retracted a 2012 paper by Gilles-Eric Séralini claiming that eating genetically modified (GM) maize causes cancerous tumors in rats despite “no evidence of fraud or intentional misrepresentation.” I would not exactly say no evidence. For one, the choice of rats and length of the study was such that a 30% of the rats would be expected to get cancer and die even under the best of circumstances. Also, Séralini failed to mention that earlier studies had come to the opposite conclusion about GM foods. Even the same journal had published a review of 12 long-term studies, between 90 days and two years, that showed no harm from GM corn or other GM crops. Those reports didn’t get much press because it is hard to get excited at good news, still you’d have hoped the journal editors would demand their review, at least, would be referenced in a paper stating the contrary.

A wonderful book on understanding the correct and incorrect uses of statistics.

A wonderful book on understanding the correct and incorrect uses of statistics.

The main problem I found is that the study was organized to virtually guarantee false positives. Séralini took 200 rats and divided them into 20 groups of 10. Taking two groups of ten (one male, one female) as a control, he fed the other 18 groups of ten various doses of genetically modified grain, either alone of mixed with roundup, a pesticide often used with GM foods. Based on pure statistics, and 95% confidence, you should expect that, out of the 18 groups fed GM grain there is a 1- .9518 chance (60%) that at least one group will show cancer increase, and a similar 60% chance that at least one group will show cancer decrease at the 95% confidence level. Séralini’s study found both these results: One group, the female rats fed with 10% GM grain and no roundup, showed cancer increase; another group, the female rats fed 33% GM grain and no roundup, showed cancer decrease — both at the 95% confidence level. Séralini then dismissed the observation of cancer decrease, and published the inflammatory article and a companion book (“We are all Guinea Pigs,” pictured above) proclaiming that GM grain causes cancer. Better editors would have forced Séralini to acknowledge the observation of cancer decrease, or demanded he analyze the data by linear regression. If he had, Séralini would have found no net cancer effect. Instead he got to publish his bad statistics, and (since non of the counter studies were mentioned) unleashed a firestorm of GM grain products pulled from store shelves.

Did Séralini knowingly design a research method aimed to produce false positives? In a sense, I’d hope so; the alternative is pure ignorance. Séralini is a long-time, anti GM-activist. He claims he used few rats because he was not expecting to find any cancer — no previous tests on GM foods had suggested a cancer risk!? But this is mis-direction; no matter how many rats in each group, if you use 20 groups this way, there is a 60% chance you’ll find at least one group with cancer at the 95% confidence limit. (This is Poisson-type statistics see here). My suspicion is that Séralini knowingly gamed the experiments in an effort to save the world from something he was sure was bad. That he was a do-gooder twisting science for the greater good.

The most common reason for retraction is that the article has appeared elsewhere, either as a substantial repeat from the authors, or from other authors by plagiarism or coincidence. (BC Comics, by Johnny Hart, 11/25/10).

It’s important to cite previous work and aspects of the current work that may undermine the story you’d like to tell; BC Comics, Johnny Hart.

This was not the only major  retraction of the month, by the way. The Harrisburg Patriot & Union retracted its 1863 review of Lincoln’s Gettysburg Address, a speech the editors originally panned as “silly remarks”, deserving “a veil of oblivion….” In a sense, it’s nice that they reconsidered, and “…have come to a different conclusion…” My guess is that the editors were originally motivated by do-gooder instinct; they hoped to shorten the war by panning the speech.

There is an entire blog devoted to retractions, by the way:  http://retractionwatch.com. A good friend, Richard Fezza alerted me to it. I went to high school with him, then through under-grad at Cooper Union, and to grad school at Princeton, where we both earned PhDs. We’ll probably end up in the same old-age home. Cooper Union tried to foster a skeptical attitude against group-think.

Robert Buxbaum, Dec 23, 2013. Here is a short essay on the correct way to do science, and how to organize experiments (randomly) to make biassed analysis less likely. I’ve also written on nearly normal statistics, and near poisson statistics. Plus on other random stuff in the science and art world: Time travel, anti-matter, the size of the universe, Surrealism, Architecture, Music.

Murder rate in Finland, Japan higher than in US

The murder rate in Finland and Japan is higher than in the US if suicide is considered as a type of murder. In the figure below, I’ve plotted total murder rates (homicide plus suicide) for several developed-world countries. The homicide component is in blue, with the suicide rate above it, in green. In terms of this total, the US is seen to be about average among the developed counties. Mexico has the highest homicide rate for those shown, Japan has the highest suicide rate, and Russia has this highest total murder rate shown (homicide + suicide): nearly double that of the US and Canada. In Russia and Japan, some .02% of the population commit suicide every year. The Scandinavian countries are quite similar to the US, and Japan, and Mexico are far worse. Italy, Greece and the UK are better than the US, both in terms of low suicide rate and low homicide rate.

  Combined homicide and suicide rates for selected countries, 2005.


Homicide and suicide rates for selected countries, 2005 Source: Wikipedia.

In the US, pundants like Piers Morgan like to use our high murder rate as an indicator of the ills of American society: loose gun laws are to blame, they say, along with the lack of social welfare safety net, a lack of support for the arts, and a lack of education and civility in general. Japan, Canada, and Scandinavia are presented as near idyls, in these regards. When murder is considered to include suicide though, the murder-rate difference disappears. Add to this, that violent crime rates are higher in Europe, Canada, and the UK, suggesting that clean streets and education do not deter crime.

The interesting thing though is suicide, and what it suggests about happiness. According to my graphic, the happiest, safest countries appear to be Italy and Greece. Part of this is likely weather , people commit suicide more in cold countries, but another part may be that some people (malcontents?) are better served by dirty, noisy cafés and pubs where people meet and complain, and are not so well served by clean streets and civility. It’s bad enough to be a depressed outsider, but it’s really miserable if everything around you is clean, and everyone is polite but busy.

Yet another thought about the lower suicide rates in the US and Mexico, is that some of the homicide in these countries is really suicide by proxy. In the US and Mexico depressed people (particularly men) can go off to war or join gangs. They still die, but they die more heroically (they think) by homicide. They volunteer for dangerous army missions or to attack a rival drug-lord outside a bar. Either they succeed in killing someone else, or they’re shot dead. If you’re really suicidal and can’t join the army, you could move to Detroit; the average house sold for $7100 last year (it’s higher now, I think), and the homicide rate was over 56 per 100,000. As bad as that sounds, it’s half the murder rate of Greenland, assuming you take suicide to be murder.

R.E. Buxbaum, Sept 14, 2013

Ozone hole shrinks to near minimum recorded size

The hole in the ozone layer, prominently displayed in Al Gore’s 2006 movie, an inconvenient truth has been oscillating in size and generally shrinking since 1996. It’s currently reached its second lowest size on record.

South pole ozone hole shrinks to 2nd smallest size on record. Credit: BIRA/IASB

South pole ozone hole (blue circle in photo), shrinks to its 2nd smallest size on record. Note outline of antarctica plus end of south america and africa. Photo Credit: BIRA/IASB

The reason for the oscillation is unknown. The ozone hole is small this year, was large for the last few years, and was slightly smaller in 2002. My guess is that it will be big again in 2013. Ozone is an alternate form of oxygen containing three oxygen atoms instead of the usual two. It is an unstable compound formed by ions in the upper atmosphere acting on regular oxygen. Though the ozone concentration in the atmosphere is low, ozone is important because it helps shield people from UV radiation — radiation that could otherwise cause cancer (it also has some positive effects on bones, etc.).

An atmospheric model of ozone chemistry implicated chlorofluorocarbons (freons) as a cause of observed ozone depletion. In the 1980s, this led to countries restricting the use of freon refrigerants. Perhaps these laws are related to the shrinkage of the ozone hole, perhaps not. There has been no net decrease in the amount of chlorofluorocarbons in the atmosphere, and the models that led to banning them did not predicted the ozone oscillations we now see are common — a fault also found with models of global warming and of stock market behavior. Our best computer models do not do well with oscillatory behaviors. As Alan Greenspan quipped, our best models successfully predicted eight of the last five recessions. Whatever the cause, the good news is that the ozone hole has closed, at least temporarily. Here’s why the sky is blue, and some thoughts on sunlight, radiation and health.

by Dr. Robert E. Buxbaum, dedicated to bringing good news to the perpetually glum.

Slowing Cancer with Fish and Unhealth Food

Some 25 years ago, while still a chemical engineering professor at Michigan State University, I did some statistical work for a group in the Physiology department on the relationship between diet and cancer. The research involved giving cancer to groups of rats and feeding them different diets of the same calorie intake to see which promoted or slowed the disease. It had been determined that low-calorie diets slowed cancer growth, and were good for longevity in general, while overweight rats died young (true in humans too, by the way, though there’s a limit and starvation will kill you).

The group found that fish oil was generally good for you, but they found that there were several unhealthy foods that slowed cancer growth in rats. The statistics were clouded by the fact that cancer growth rates are not normally distributed, and I was brought in to help untangle the observations.

With help from probability paper (a favorite trick of mine), I confirmed that healthy rats fared better on healthily diets, but cancerous rats did better with some unhealth food. Sick or well, all rats did best with fish oil, and all rats did pretty well with olive oil, but the cancerous rats did better with lard or palm oil (normally an unhealthy diet) and very poorly with corn oil or canola, oils that are normally healthful. The results are published in several articles in the journals “Cancer” and “Cancer Research.”

Among vitamins, they found something similar (it was before I joined the group). Several anti-oxidizing vitamins, A, D and E made things worse for carcinogenic rats while being good for healthy rats (and for people in moderation). Moderation is key; too much of a good thing isn’t good, and a diet with too much fish oil promotes cancer.

What seems to be happening is that the cancer cells grow at the same rate with all of the equi-caloric diets, but that there was a difference the rate of natural cancer cell death. More cancer cells died when the rat was fed junk food oils than those fed a diet of corn oil and canola. Similarly, the reason anti-oxidizing vitamins hurt cancerous rats was that fewer cancer cells died when the rats were fed these vitamins. A working hypothesis is that the junk oils (and the fish oil) produced free radicals that did more damage to the cancer than to the rats. In healthy rats (and people), these free radicals are bad, promoting cell mutation, cell degradation, and sometimes cancer. But perhaps our body use these same free radicals to fight disease.

Larger amounts of vitamins A, D, and E hurt cancerous-rats by removing the free radicals they normally use fight the disease, or so our model went. Bad oils and fish-oil in moderation, with calorie intake held constant, helped slow the cancer, by a presumed mechanism of adding a few more free radicals. Fish oil, it can be assumed, killed some healthy cells in the healthy rats too, but not enough to cause problems when taken in moderation. Even healthy people are often benefitted by poisons like sunlight, coffee, alcohol and radiation.

At this point, a warning is in-order: Don’t rely on fish oil and lard as home remedies if you’ve got cancer. Rats are not people, and your calorie intake is not held artificially constant with no other treatments given. Get treated by a real doctor — he or she will use radiation and/ or real drugs, and those will form the right amount of free radicals, targeted to the right places. Our rats were given massive amounts of cancer and had no other treatment besides diet. Excess vitamin A has been shown to be bad for humans under treatment for lung cancer, and that’s perhaps because of the mechanism we imagine, or perhaps everything works by some other mechanism. However it works, a little fish in your diet is probably a good idea whether you are sick or well.

A simpler health trick is that it couldn’t hurt most Americans is a lower calorie diet, especially if combined with exercise. Dr. Mites, a colleague of mine in the department (now deceased at 90+) liked to say that, if exercise could be put into a pill, it would be the most prescribed drug in America. There are few things that would benefit most Americans more than (moderate) exercise. There was a sign in the physiology office, perhaps his doing, “If it’s physical, it’s therapy.”

Anyway these are some useful things I learned as an associate professor in the physiology department at Michigan State. I ended up writing 30-35 physiology papers, e.g. on how cells crawl and cell regulation through architecture; and I met a lot of cool people. Perhaps I’ll blog more about health, biology, the body, or about non-normal statistics and probability paper. Please tell me what you’re interested in, or give me some keen insights of your own.

Dr. Robert Buxbaum is a Chemical Engineer who mostly works in hydrogen I’ve published some 75 technical papers, including two each in Science and Nature: fancy magazines that you’d normally have to pay for, but this blog is free. August 14, 2013

Control engineer joke

What made the control engineer go crazy?

 

He got positive feedback.

Is funny because …… it’s a double entente, where both meanings are true: (1) control engineers very rarely get compliments (positive feedback); the aim of control is perfection, something that’s unachievable for a dynamic system (and generally similar to near perfection: the slope at a maximum is zero). Also (2) systems go unstable if the control feedback is positive. This can happen if the controller was set backwards, but more usually happens when the response is too fast or too extreme. Positive feedback pushes a system further to error and the process either blows up, or (more commonly) goes wildly chaotic, oscillating between two or more “strange attractor” states.

It seems to me that hypnosis, control-freak love, and cult behaviors are the result of intentionally produced positive feedback. Palsies, economic cycles, and global warming are more likely the result of unintentional positive feedback. In each case, the behavior is oscillatory chaotic.

The  normal state of Engineering is lack of feedback. Perhaps this is good because messed up feedback leads to worse results. From xykd.

Our brains give little reliable feedback on how well they work, but that may be better than strong, immediate feedback, as that could lead to bipolar instability. From xkcd. For more on this idea, see Science and Sanity, by Alfred Korzbski (mini youtube)

Control engineers tend to be male (85%), married (80%), happy people (at least they claim to be happy). Perhaps they know that near-perfection is close enough for a complex system in a dynamic world, or that one is about as happy as believes ones-self to be. It also helps that control engineer salaries are about $95,000/ year with excellent benefits and low employment turnover.

Here’s a chemical engineer joke I made up, and an older engineering joke. If you like, I’ll be happy to consult with you on the behavior of your processes.

By Dr. Robert E. Buxbaum, July 4, 2013

Hormesis, Sunshine and Radioactivity

It is often the case that something is good for you in small amounts, but bad in large amounts. As expressed by Paracelsus, an early 16th century doctor, “There is no difference between a poison and a cure: everything depends on dose.”

Aereolis Bombastus von Hoenheim (Paracelcus)

Phillipus Aureolus Theophrastus Bombastus von Hoenheim (Dr. Paracelsus).

Some obvious examples involve foods: an apple a day may keep the doctor away. Fifteen will cause deep physical problems. Alcohol, something bad in high doses, and once banned in the US, tends to promote longevity and health when consumed in moderation, 1/2-2 glasses per day. This is called “hormesis”, where the dose vs benefit curve looks like an upside down U. While it may not apply to all foods, poisons, and insults, a view called “mitridatism,” it has been shown to apply to exercise, chocolate, coffee and (most recently) sunlight.

Up until recently, the advice was to avoid direct sun because of the risk of cancer. More recent studies show that the benefits of small amounts of sunlight outweigh the risks. Health is improved by lowering blood pressure and exciting the immune system, perhaps through release of nitric oxide. At low doses, these benefits far outweigh the small chance of skin cancer. Here’s a New York Times article reviewing the health benefits of 2-6 cups of coffee per day.

A hotly debated issue is whether radiation too has a hormetic dose range. In a previous post, I noted that thyroid cancer rates down-wind of the Chernobyl disaster are lower than in the US as a whole. I thought this was a curious statistical fluke, but apparently it is not. According to a review by The Harvard Medical School, apparent health improvements have been seen among the cleanup workers at Chernobyl, and among those exposed to low levels of radiation from the atomic bombs dropped on Hiroshima and Nagasaki. The health   improvements relative to the general population could be a fluke, but after a while several flukes become a pattern.

Among the comments on my post, came this link to this scholarly summary article of several studies showing that long-term exposure to nuclear radiation below 1 Sv appears to be beneficial. One study involved an incident where a highly radioactive, Co-60 source was accidentally melted into a batch of steel that was subsequently used in the construction of apartments in Taiwan. The mistake was not discovered for over a decade, and by then the tenants had received between 0.4 and 6 Sv (far more than US law would allow). On average, they were healthier than the norm and had significantly lower cancer death rates. Supporting this is the finding, in the US, that lung cancer death rates are 35% lower in the states with the highest average radon radiation levels (Colorado, North Dakota, and Iowa) than in those with the lowest levels (Delaware, Louisiana, and California). Note: SHORT-TERM exposure to 1 Sv is NOT good for you; it will give radiation sickness, and short-term exposure to 4.5 Sv is the 50% death level

Most people in the irradiated Taiwan apartments got .2 Sv/year or less, but the same health benefit has also been shown for people living on radioactive sites in China and India where the levels were as high as .6 Sv/year (normal US background radiation is .0024 Sv/year). Similarly, virtually all animal and plant studies show that radiation appears to improve life expectancy and fecundity (fruit production, number of offspring) at dose rates as high as 1 Sv/month.

I’m not recommending 1 Sv/month for healthy people, it’s a cancer treatment dose, and will make healthy people feel sick. A possible reason it works for plants and some animals is that the radiation may kill proto- cancer, harmful bacteria, and viruses — organisms that lack the repair mechanisms of larger, more sophisticated organisms. Alternately, it could kill non-productive, benign growths allowing the more-healthy growths to do their thing. This explanation is similar to that for the benefits farmers produce by pinching off unwanted leaves and pruning unwanted branches.

It is not conclusive radiation improved human health in any of these studies. It is possible that exposed people happened to choose healthier life-styles than non-exposed people, choosing to smoke less, do more exercise, or eat fewer cheeseburgers (that, more-or-less, was my original explanation). Or it may be purely psychological: people who think they have only a few years to live, live healthier. Then again, it’s possible that radiation is healthy in small doses and maybe cheeseburgers and cigarettes are too?! Here’s a scene from “Sleeper” a 1973, science fiction, comedy movie where Woody Allan, asleep for 200 years, finds that deep fat, chocolate, and cigarettes are the best things for your health. You may not want a cigarette or a radium necklace quite yet, but based on these studies, I’m inclined to reconsider the risk/ benefit balance in favor of nuclear power.

Note: my company, REB Research makes (among other things), hydrogen getters (used to reduce the risks of radioactive waste transportation) and hydrogen separation filters (useful for cleanup of tritium from radioactive water, for fusion reactors, and to reduce the likelihood of explosions in nuclear facilities.

by Dr. Robert E. Buxbaum June 9, 2013

How Theodore Roosevelt survived being shot

Two more pictures of Theodore Roosevelt. The first is an x-ray showing the bullet he received as he entered a hall to give a 90 minute speech in 1912. How he survived the shooting: he did nothing. He left the bullet stay where it was for the rest of his life. It seems that both McKinley and Garfield had died from infection of their shooting wounds after doctors poked around trying to extract the bullet. It’s quite possible that Lincoln died the same way (Lincoln’s doctor was the one who killed Garfield by poking around this way).X-ray of Teddy Roosevelt showing the bullet where he let it lie.

X-ray of Teddy Roosevelt showing the bullet where he let it lie. The stripes look like lead paint, used to mark the spot. 

Roosevelt knew from hunting that a shot animal could last for years with the bullet still inside him. Roosevelt (and his doctors) knew, or suspected, that his bullet had stopped in a place where it would be harmless unless someone tried to extract it.

T. Roosevelt with Rhino, 1909.

T. Roosevelt with Rhino, 1909. Teddy would be shot 3 years later, in 1912.

In the speech, Roosevelt said, “it takes more than that to stop a Bull Moose.” He ought to know. For more T. Roosevelt pictures, click here.