Most people know that aspirin can reduce blood clots and thus the risk heart attack, as shown famously in the 1989 “Physicians’ Health Study” where 22,000 male physicians were randomly assigned to either a regular aspirin (325 mg) every other day or an identical looking placebo. The results are shown in the table below, where “Myocardial Infarction” or “MI” is doctor-speak for heart attack.
Treatment
Myocardial Infarctions
No Infarction
Total
fraction with MI
Aspirin
139
10,898
11,037
139/11,037 = 0.0126
Placebo
239
10,795
11,034
239/11,034 = 0.0217
Over the 5 years of the study, the physicians had 378 MI events, but mostly in the group that didn’t take aspirin: 1.28% of the doctors who took aspirin had a heart attack as opposed to 2.17% for those with the placebo. The ratio 1.28/2.17 = 0.58 is called the risk ratio. Apparently, aspirin in this dose reduces your MI risk to 58% of what it was otherwise — at least in white males of a certain age.
A blood clot showing red cells held together by fibrin fibers. Clots can cause heart attack, stroke, and breathing problems. photo: Steve Gschmeissner.
Further study showed aspirin benefits with women and other ethnicities, and benefits beyond hear attack, in any disease that induces disseminated intravascular coagulopathy. That’s doctor speak for excessive blood clots. Aspirin produced a reduction in stroke and in some cancers (Leukemia among them) and now it now seems likely that aspirin reduces the deadliness of COVID-19. Data from Wuhan showed that excessive blood clots were present in 71% of deaths vs. 0.4% of survivors. In the US, some 30% of those with serious COVID symptoms and death show excessive blood clots, particularly in the lungs. Aspirin and Vitamin D seem to help.
.The down-side of aspirin use is a reduction in wound healing and some intestinal bleeding. The intestinal bleeding is known as aspirin burn. Because of these side-effects it is common to give a lower dose today, just one baby aspirin per day, 81 mg. While this does does some good, It is not clear that it is ideal for all people. This recent study in the Lanset (2018) shows a strong relationship between body weight and aspirin response. Based on 117,279 patients, male and female, the Lanset study found that the low dose, baby aspirin provides MI benefits only in thin people, those who weigh less than about 60 kg (130 lb). If you weigh more than that, you need a higher dose, perhaps two baby aspirin per day, or a single adult aspirin every other day, the dose of the original doctors study.
In this study of COVID patients, published in July, those who had been taking aspirin fared far better than those who did not A followup study will examine the benefits of one baby aspirin (81 mg) with and without Vitamin D, read about it here. I should note that other pain medications do not have this blood-thinning effect, and would not be expected to have the same benefit.
While it seems likely that 2 baby aspirins might be better in fat people, or one full aspirin every other day, taking a lot more than this is deadly. During the Spanish flu some patients were given as much as 80 adult aspirins per day. It likely killed them. As Paracelsus noted, the difference between a cure and a poison is the dose.
A few days ago, I asked for and received the PCV-13 pneumonia vaccine, and a few days earlier, the flu shot. These vaccines are free if you are over 65, but you have to ask for them. PCV-13 is the milder of the pneumonia vaccines, providing moderate resistance to 12 common pneumonia strains, plus a strain of diphtheria. There is a stronger shot, with more side-effects. The main reason I got these vaccines was to cut my risk from COVID-19.
Some 230,00 people have died from COVID-19. Almost all none of them were under 20, and hardly any died from the virus itself. As with the common flu, they died from side infections and pneumonia. Though the vaccine I took is not 100% effective against event these 13 pneumonias, it is fairly effective, especially in the absence of co-morbidities, and has few side effects beyond stiffness in my arm. I felt it was a worthwhile protection, and further reading suggests it was more worthwhile than I’d thought at first.
It is far from clear there will be a working vaccine for SARS-CoV-2, the virus that causes COV-19. We’ve been trying for 40 years to make a vaccine against AIDS, without success. We have also failed to create a working vaccine for SARS, MERS, or the common cold. Why should SARS-CoV-2 be different? We do have a flu vaccine, and I took it, but it isn’t very effective, viruses mutate. Despite claims that we would have a vaccine for COVID-19 by early next year, I came to imagine it would not be a particularly good vaccine, and it might have side effects. On the other hand, there is a fair amount of evidence that the pneumonia vaccine works and does a lot more good than one might expected against COVID-19.
A colleague of mine from Michigan State, Robert Root Bernstein, analyzed the effectiveness of several vaccines in the fight against COVID-19 by comparing the impact of COVID-19 on two dozen countries as a function of all the major inoculations. He found a strong correlation only with pneumonia vaccine: “Nations such as Spain, Italy, Belgium, Brazil, Peru and Chile that have the highest COVID-19 rates per million have the poorest pneumococcal vaccination rates among both infants and adults. Nations with the lowest rates of COVID-19 – Japan, Korea, Denmark, Australia and New Zealand – have the highest rates of pneumococcal vaccination among both infants and adults.” Root-Bernstein also looked at the effectiveness of adult inoculation and child inoculation. Both were effective, at about the same rate. This suggests that the the plots below are not statistical flukes. Here is a link to the scientific article, and here is a link to the more popular version.
An analysis of countries in terms of COVID rates and deaths versus pneumonia vaccination rates in children and adults. The US has a high child vaccination rate, but a low adult vaccination rate. Japan, Korea, etc. are much better. Italy, Belgium, Spain, Brazil, and Peru are worse. Similar correlations were found with child and adult inoculation, suggesting that these correlations are not flukes of statistics.
I decided to check up on Root-Bernstein’s finding by checking the state-by state differences in pneumonia vaccination rates — information available here — and found that the two US states that were hardest hit by COVID, NY and NJ, have among the lowest rates of inoculation. Of course there are other reasons at play. These states are uncommonly densely populated, and the governments of both made the unfortunate choice of sending infected patients to live in old age homes. At least half of the deaths were in these homes.
Pneumonia vaccination may also explain why the virus barely affected those under 20. Pneumonia vaccines was available only in 2000 or so. Many states then began to vaccinate about then and required it to attend school. The time of immunization could explain why those younger than 20 in the US do so well compared to older individuals, and compared to some other countries where inoculation was later. I note that China has near universal inoculation for pneumonia, and was very mildly hit.
I also took the flu shot, and had taken the MMR (measles) vaccine last year. The side effects, though bad, are less bad than the benefits, I thought, but there was another reason, and that’s mimicry. It is not uncommon that exposure to one virus or vaccine will excite the immune system to similar viruses, so-called B cells and T-cell immunity. A recent study from the Mayo Clinic, read it here, shows that other inoculations help you fight COVID-19. By simple logic, I had expected that the flu vaccine would help me this way. The following study (from Root-Bernstein again) shows little COVID benefit from flu vaccine, but evidence that MMR helps (R-squared of 0.118). Let men suggest it’s worth a shot, as it were. Similar to this, I saw just today, published September 24, 2020 in the journal, Vaccines, that the disease most molecularly similar to SARS-CoV-2 is pneumonia. If so, mimicry provides yet another reason for pneumonia vaccination, and yet another explanation for the high correlations shown above.
As a final comparison, I note that Sweden has a very high pneumonia inoculation rate, but seems to have a low mask use rate. Despite this, Sweden has done somewhat better than the US against COVID-19. Chile has a low inoculation rates, and though they strongly enforced masks and social distance, it was harder hit than we were. The correlation isn’t 100%, and masks clearly do some good, but it seems inoculation may be more effective than masks.
There are two main routes for catching flu. One is via your hands and your eyes and nose. Your hands pick up germs from the surfaces you touch, and when you touch your eyes or nose passages, the germs infect you. This was thought to be the main route for infection, and I still think it is. I’d been pushing iodine hand sanitizer for some time, the stuff used in hospitals, saying that that the alcohol hand sanitizer doesn’t work well, that it evaporates.
The other route, the one touted by the press these days is via direct cough droplets, breathing them in or getting them in your eyes. Masks and face shields are the preferred protection from this route, and the claim is that masks will stop 63% of the spread. The 63% number has an interesting history, it comes from this test with infected hamsters. Hamsters are 63% less likely to infect other hamsters when they wear a mask. Of course, the comparison has some weaknesses: hamsters don’t put their fingers in their noses, nor do they rub their eyes with their hands, and hamsters can be forced to keep the mask barrier all the time — read the study to see how.
A more realistic study, or more relevant to people, in my opinion showed a far lower effect for masks, about 20%. During the HiNi flu pandemic of 2009 a group of 1437 college students at a single university were divided into three randomized groups, see the original report here. Students at a few chosen residence halls were instructed to wash their hands regularly, use sanitizer, and wear masks. Students at other halls were either told to wear masks only, or told to go on as they pleased. This was the largest group, the control. They included students of the the largest residence hall on campus. The main results appear as the graph below, Figure 1 of the report. It shows a difference of 6% or 20%, depending on how you look at things, with the mask plus hand-health group, MPHH, doing the best.
After 6 weeks of monitoring, approximately 36% of the control group had gotten the flu or some collection of flu symptoms. The remaining 64% of the residents remained symptom free. This is he darkest line above.
Of the FM Only group, the medium line above, those instructed to wear face masks only. 30% of this group showed flu symptoms, with 70% remaining symptom free. Clearly masks do help with humans, but far less than what you’d expect from the news reports.
Sweden kept the primary schools open and allows people to wear masks and social distance at they see fit. The death toll to August 1 is identical to Michigan, or slightly bette Sweden’s top virologist recommends that the US follow suit. Open up and trust people.
The group that did best was FMHH, the group who both wore facemarks and used hand health, regular hand washing plus hand sanitizer. This group reported an average of 3.5 hours per day of mask use above the control group average. This is about as good or better than I see in Michigan. Adding the hand health provided an additional 1% improvement, or a 3% improvement, depending on how you look at these things. The press claims hand health is wasted effort, but I’m not so sure. I argue that the effect was significant, and that the hand sanitizer was bad. I argue that iodine hand wash would have done better at far less social cost.
I also note that doing nothing was not that much worse than mask use. This matches with the observation of COVID-19 in Sweden. With no enforced social distancing, Sweden did about the same as Michigan — slightly better, despite Michigan closing the schools and restaurants, and imposing some of the toughest requirements for social distancing and mask use.
Other things that affect how likely you are to get flu symptoms. I find these rustles more interesting than the main face-mask result.
There were other observations from the university study that i found isignificant. There are racial differences and social differences. The authors didn’t highlight these, but they are at least as large as the effect of mask use. Asians got the flu only 70% as often as others, while black students got it 8% more often. This matches what has been seen in the US with COVID-19. Also interesting, those with a recent flu shot got flu more often; those with physical activity 13% more often. Smokers got the flu less than non-smokers and women got it 22% more often than men. The last two are the reverse with COVID-19. I could speculate on the reasons, but clearly there is a lot going on.
Why did Asians do better than others? Perhaps Asians have had prior exposure to some similar virus, and are thus slightly immune, or perhaps they used the masks more, being more socially acceptable. Why were smokers protected? It’s likely that smoke kills germs; was that the cause. These are speculations, and as for the rest I don’t know.
I am not that bothered that the students probably didn’t wear their masks 100% of the time. Better would be better, but even with mask use 100% of the time, there are other known routes that are almost impossible to remove: clothing, food, touching your face. I still think there is a big advantage to iodine hand wash, and I suspect we would be better off opening up a bit too.
Sweden has scientists; Michigan has scientists. Sweden’s scientists said to trust people to social distance and let the COVID-19 disease run its course. It was a highly controversial take, but Sweden didn’t close the schools, didn’t enforce masks, and let people social distance as they would. Michigan’s scientists said to wear masks and close everything, and the governor enforced just that. She closed the schools, the restaurants, the golf courses, and even the parks for a while. In Michigan you can not attend a baseball game, and you can be fined for not wearing a mask in public. The net result: Michigan and Sweden had almost the same death totals and rates, as the graphs below show. As of July 28, 2020: Sweden had 5,702 dead of COVID-19, Michigan had 6,402. That’s 13 more dead for a population that’s 20% smaller.
Sweden’s deaths pre day. There are 5,702 COVID dead since the start, out of a population of 10.63 million. There are 79,494 confirmed COVID cases, but likely a lot more infected.
Sweden and Michigan are equally industrial, with populations in a few dense cities and a rural back-country. Both banned large-scale use of hydroxy-chloroquine. Given the large difference in social distance laws, you’d expect a vastly different death rate, with Michigan’s, presumably lower, but there is hardly any difference at all, and it’s worthwhile to consider what we might learn from this.
Michigan’s deaths pre day. There are 6,426 COVID dead since the start, out of a population of 9.99 million. There are 88,025 confirmed COVID cases, but likely a lot more infected.
What I learn from this is not that social distance is unimportant, and not that hand washing and masks don’t work, but rather it seems to me that people are more likely to social distance if they themselves are in control of the rules. This is something I also notice comparing freezer economies to communist or controlled ones: people work harder when they have more of a say in what they do. Some call this self -exploitation, but it seems to be a universal lesson.
Both Sweden and the US began the epidemic with some moderate testing of a drug called hydroxychloroquine (HCQ)and both mostly stopped in April when the drug became a political football. President Trump recommended it based on studies in France and China, but the response was many publications showing the didn’t work and was even deadly. Virtually ever western country cut back use of the drug. Brazil’s scientists objected — see here where they claim that those studies were crooked. It seems that countries that continued to use the drug had fewer COVID deaths, see graph, but it’s hard to say. The Brazilians claim that the anti HCQ studies were politically motivated, but doctors in both Sweden and the US largely stopped prescribing the drug. This seems to have been a mistake.
US hospitals stopped using HCQ in early April almost as soon as Trump recommended it. Sweden did the same.
In July, Henry Ford hospitals published this large-scale study showing a strong benefit: for HCQ: out of 2,541 patients in six hospitals, the death rate for those treated with HCQ was 13%. For those not treated with HCQ, the death rate was more than double: 26.4%. It’s not clear that this is cause and effect. It’s suggestive, but there is room for unconscious bias in who got the drug. Similarly, last week, a Yale researcher this week used epidemiological evidence to say HCQ works. This might be proof, or not. Since epidemiology is not double-blind, there is more than common room for confounding variables. By and large the newspaper experts are unconvinced by epidemiology and say there is no real evidence of HCQ benefit. In Michigan and Sweden the politicians strongly recommend continuing their approaches, by and large avoiding HCQ. In Brazil, India and much of the mideast, HCQ is popular. The countries that use HCQ claim it works. The countries that don’t claim it does not. The countries with strict lock-down say that science shows this is what’s working. The countries without, claim they are right to go without. All claim SCIENCE to support their behaviors, and likely that’s faulty logic.
Hydroxychloroquine and COVID-19 fatality rates in different countries as of early June 2020. This isn’t enough to prove HCQ effectiveness, but it’s promising, and suggests that increased use is warranted, at least among those without heart problems.
Given my choice, I’d like to see more use of HCQ. I’m not sure it works, but I’m ,sure there’s enough evidence to put it into the top tier of testing. I’d also prefer the Sweden method, of nor enforced lockdown, or a very moderate lockdown, but I live I’m Michigan where the governor claims she knows science, and I’m willing to live within the governor’s lockdown.There is good, scientific evidence that, if you don’t you get fined or go to jail.
When I was eight or nine year old, I went to the 1963-64 World’s Fair in New York. Among the attractions, in “the kitchen of the future”, I saw the first version of an amazing fry-pan that was coated with plastic. You could cook an egg on that plastic without any oil, and the egg didn’t stick. The plastic was called teflon, a DuPont innovation, whose molecule is shown below.
The molecular structure of Teflon. There is an interior carbon backbone that is completely enclosed with tightly bound fluorine atoms. The net result is a compound that does not bind readily to anything else.
Years later, I came to understand that Teflon’s high-temperature stability and non-stick properties derive from the carbon-fluorine bonds. These bonds are much stronger than the carbon-hydrogen bonds found in food, and most solid, organic things. Because of the strength of the carbon-fluorine bond, Teflon is resistant to oxidation, and to chemical interaction with other molecules, e.g. in food. It does not even interact with water, making it hydrophobic and non-wetting on metals. The carbon-carbon bonds in the middle remained high temperature stable, in part because they were completely shielded by the fluorine atoms.
This is a PFAS. The left side is just like teflon, and very hydrophobic. The right side is hydrophilic and highly bonding to pans, and many other things like water or cotton.
But as remarkable as teflon’s non-stick properties are, perhaps the most amazing thing was that it somehow sticks to the pan. For the first generation pans I saw, it didn’t stick very well. Still, the DuPont engineers had found a way to stick non-stick Teflon to a metal for long enough to cook many meals. If they had not found this trick, teflon would not have the majority of its value, but how did they do it? It turns out they used a thin coating of a di-functional compound called PFAS, a a polyfluoro sulphonyl (or polyfluoroalkyl) substance. The molecular structure of a common PFAS, is shown above.
Each molecule of PFAS has one end that’s teflon-like and another end that’s different. The non-Teflon end, in this case a sulfonyl group, is chosen to be both high temperature stable and sticky to metal oxides. The sulphonyl group above is highly polar, and acidic. Acidic will bind to bases, like metal oxides. The surface of the metal pan is prepared by applying a thin layer of oxide or amidine, making it a polar base. The PFAS is then applied, then Teflon. The Teflon-end of the PFAS is bound to teflon by the hydrophobicity of everything else rejecting it.
There are many other uses for PFAS. For example, PFAS is applied to clothing to make it wrinkle free and stain resistant. It can also be used as a super soap, making uncommonly stable foams and bubbles. It is also used in fire-fighting and plane de-icing. Finally, PFAS is the main component of Nafion, the most common membrane for PEM fuel cells. (I can think of yet other applications..) There is just one small problem with PFAS, though. Like teflon, this molecule is uncommonly stable. It doesn’t readily decompose in nature. That would be a small problem if we were sure that PFAS was safe. As it happens it seems safe, but we’re not totally sure.
The safety of PFAS was studied extensively before PFAS-teflon pans was put on the market, but the methodology has been questioned. Large doses of PFAS were fed to test animals, and their health observed. Since the test animals showed no real signs of ill-health though some showed a slight liver enlargement, PFAS was accepted as safe for humans at a lower exposure dose. PFAS was approved for use on pans and allowed to be dumped under conditions where humans would be exposed to 1/1000 of that used on the animals. The assumption was that there would be little or no health hazard at these low exposure levels.
But low risk is not no risk, and today one can sue for even the hint of an effect though use of a class action suit. That is, lawyers sue on behalf of all the people who might have been damaged. My city was sued successfully this way for complicity in sewage over-flows. Of course, since the citizens being paid by the suit are the same ones who have to pay for the damage, only the lawyers benefit. Still, the law is the law, and at least for some judges, putting anyone at risk is enough evidence of willful disregard to hand down a stinging judgement against the evil doer. Judges have begun awarding large claims for PFAS too. While no individual can get the claim more than a tiny amount of money, the lawyers can do very well.
There is no new evidence that PFAS is dangerous, but none is needed if you can get yourself the right judge. In this regard, an industry of judicial tourism has sprung up, where class-action lawyers travel to districts where the judges are favorable. For Teflon suits, the bust hunting grounds are in New York, New Hampshire, and California, and the worst are blood-red states like Wyoming and Utah. Just as different judges promote different precedents, different states allow vastly different PFAS concentrations in the water. A common standard, one used by Michigan, is 70 ppt, 1 billion times stricter than the amounts tested on animals. This is roughly 500 times stricter than the acceptable concentratios for lead, a known poison. The standard in New York is 7 times stricter than Michigan, 10 ppt. The standard in North Carolina is 140,000 ppt, in in several states there is no legal limit to PFAS dumping. There is no scientific logic to all of this, and skeptical view is that the states that rule more strictly for PFAS than lead do so make money for lawyers. Lead is everyone in the natural environment, so you can’t sue as easily for lead. PFAS is a man-made intruder, though, and a strict standard helps lawyers sue. You can find a summary of state by state regulations here.
Any guideline stricter than about 1000 ppt, presents a challenge to the water commissioner who must measure it and enforce the law. There are tricks, though. You can use the surfactant quality of PFAS to concentrate it by a factor of 100 or more. To do this, you take a sample of river water and create bubbles. Any bubbles that form will be highly concentrated in PFAS. Once PFAS can be identified this way, and the concentrators estimated, the polluters can be held liable. Whether we benefit from the strict rulings is another story. If I were making the law for Michigan, I’d probably choose a limit about 1 ppb, but I’m not making the law. The law, as written, may be an idiot, as Bumble said, but the Law is the Law.
In terms of Michigan fishing, while some rivers have PFAS concentrators above the MI-legal limit, they are generally not far over the line. I would trust the fish in the Huron River, even west of Wixom road but I’d suggest you avoid any foam you find floating there. The PFAS content of foam will be much higher than that of the water in general.
Robert E. Buxbaum, June 30, 2020, edited July 8, 2020. There are seven compounds known as PFAS’s: perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexanesulfonic acid (PFHxS), perfluoroheptanoic acid (PFHpA), and perfluorobutanesulfonic acid (PFBS).
Readers of this blog know that I am not a fan of very harsh punishments for crime, in particular for crimes that have no direct victim, e.g. drug possession and sales. Prostitution is another crime with no direct victim. One could argue that society as a whole is the victim, but my sense is that punishments should be minimal and targeted, e.g. to prevent involuntary human trafficking and disease. Our current laws, depicted here, are clearly not designed for this, but there was a brief period where prostitution laws did make more sense. During the civil war, civil war, prostitution was legal and regulated to prevent disease.
In 1862, Union forces captured the southern cities of Nashville and Memphis, Tenn. Major Gen. William Rosecrans set up headquarters in Nashville. Before the war, Nashville was home to 198 white prostitutes and nine “mulatto,” operating in a two-block area known as “Smoky Row.”
By the end of 1862, Smokey row had grown and these numbers swelled to 1,500 “public women”. White southern women turned to prostitution out of poverty, largely. Their husbands were dead, or ill paid, and they were joined by recently freed slaves. Benton E. Dubbs, a Union private, reported a saying that “no man culd [sic] be a soldier unless he had gone through Smokey Row,” … “The street was about three-fourths of a mile long and every house or shanty on both sides was a house of ill fame. Women had no thought of dress or decency. They say Smokey Row killed more soldiers than the war.”
By 1863, venerial disease was becoming a major problem. The Surgeon General would document 183,000 cases of venereal disease in the Union Army alone, “…the Pocks and the Clap. The cases of this complaint is numerous, especially among the officers.”
Permit for Legal prostitution signed by Col George Spaulding.
At first General Rosecrans directed his assistant, Colonel Spaulding, to remove the women by sending them to other states, first by train, and then by boat commandeering the ship, Idaho for the purpose. The effect was horrible, not only was the ship turned back by every city, but the departure of these ladies just resulted in the appearance of a new cohort of sex-workers. By the time the Idaho had returned, Rosecrans had been relieved of command following embarrassing defeats at Chickamauga and Chattanooga . Col. Spaulding now tried a new technique to stop the plague of VD: legalized prostitution. It worked.
Women’s hospital during the war, Nashville.
For a $5/month fee a “public woman” could become a legal prostitute, or “Public Woman” so long as she submitted to monthly health inspections for a certificate of her soundness. If found infected, she was to report to a hospital dedicated to this treatment, was subject to imprisonment if she operated without the license and certificate. The effect was a major decline in sexually-transmitted disease, and an improvement (so it is claimed) in the quality of the services. The fees collected were sufficient to cover the cost of the operation and hospital, nearly.
At the end of the war, Col Spaulding and the union soldiers left Nashville, and prostitution returned to being illegal, if tolerated. One assumes that the VD rates went up as well.
George Spaulding, Congressman..
Colonel Spaulding and Maj. General Rosecrans are interesting characters beyond the above. Spaulding had entered the war as a private and rose through the ranks by merit. The rise didn’t stop at colonel. After the war, he became postmaster of Monroe Michigan, 1866 to 1870, US Treasury agent, 1871 to 1875, Mayor of Monroe, 1876 to ?, President of the board of education, a lawyer in 1878, and congressman for the MI 2nd district (Republican) 1894 -1898. He also served as board member of the Home for Girls 1885 to 1897, and postmaster of Monroe, 1899 to 1907.
William Rosecrans was a Catholic, engineer-inventor from West Point. Before the war, in 1853, he designed St. Mary’s Roman Catholic Church, one of the largest US churches at the time, site of the wedding of John Kennedy and Jacqueline Bouvier. He also designed and installed one of the first lock systems in Western Virginia. He and two partners built an early oil refinery. He patented a method of soap making and the first kerosene lamp to burn a round wick, and was one of the eleven incorporators of the Southern Pacific Railroad. After the war, he served as Ambassador to Mexico, 1868-69 and was congressman from California, 1st district (Democrat) 1880 – 1884. A true Democrat, Rosecrans could not stand either Grant or Garfield, and fought against Grant getting a retirement package.
Robert Buxbaum, June 5, 2020. There are other ways to stop the spread of sexual diseases. During the AIDS epidemic, condoms were the preferred method, and during the current COVID crisis, face masks are being touted. My preference is iodine hand wash. All methods work if they can reduce the transmission rate, Ro below 1.
I’m a fan of iodine both as a hand sanitizer, and as a sanitizer for surfaces. II’ve made gallons of the stuff for my own use and to give away. Perhaps I’ll come to sell it too. Unlike soap washing or alcohol sanitizer, iodine stays on your hands for hours after you use it. Alcohol evaporates in a few seconds, and soap washes off. The result is that iodine retains killing power after you use it. The iodine that I make and use is 0.1%, a concentration that is non-toxic to humans but very toxic to viruses. Here is an article about the effectiveness of iodine against viruses and bacteria Iodine works both on external surfaces, and internally, e.g. when used as a mouthwash. Iodine kills germs in all environments, and has been used for this purpose for a century.
With normal soap or sanitizer it’s almost impossible to keep from reinfecting your hands almost as soon as you wash. I’ve embedded a video showing why that is. It should play below, but here’s the link to the video on youtube, just in case it does not.
The problem with washing your hands after you receive an item, like food, is that you’re likely to infect the sink faucet and the door knob, and the place where you set the food. Even after you wash, you’re likely to re-infect yourself almost immediately and then infect the towel. Because iodine lasts on your hands for hours, killing germs, you have a good chance of not infecting yourself. If you live locally, come by for a free bottle of sanitizer.
For those who’d like more clinical data to back up the effectiveness of iodine, here’s a link to a study, I also made a video on the chemistry of iodine relevant to why it kills germs. You might find it interesting. It appears below, but if it does not play right, Here’s a link.
The video shows two possible virus fighting interactions, including my own version of the clock reaction. The first of these is the iodine starch interaction, where iodine bonds forms an I<sub>3</sub><sup>-</sup> complex, I then show that vitamin C unbinds the iodine, somewhat, by reducing the iodine to iodide, I<sup>-</sup>. I then add hydrogen peroxide to deoxidize the iodine, remove an electron. The interaction of vitamin C and hydrogen peroxide creates my version of the clock reaction. Fun stuff.
The actual virus fighting mechanism of iodine is not known, though the data we have suggests the mechanism is a binding with the fatty starches of the viral shell, the oleo-polysaccharides. Backing this mechanism is the observation that the shape of the virus does not change when attacked by iodine, and that the iodine is somewhat removable, as in the video. It is also possible that iodine works by direct oxidation, as does hydrogen peroxide or chlorine. Finally, I’ve seen a paper showing that internal iodine, more properly called iodide works too. My best guess about how that would work is that the iodide is oxidized to iodine once it is in the body.
There is one more item that is called iodine, that one might confuse with the “metallic” iodine solutions that I made, or that are sold as a tincture. These are the iodine compounds used for CAT-scan contrast. These are not iodine itself, but complex try-iodo-benzine compounds. Perhaps the simplest of these is diatrizoate. Many people are allergic to this, particularly those who are allergic to sea food. If you are allergic to this dye, that does not mean that you will be allergic to a simple iodine solution as made below.
The solution I made is essentially 0.1% iodine in water, a concentration that has been shown to be particularly effective. I add potassium iodide, plus isopropyl alcohol, 1%, 1% glycerine and 0.5% mild soap. The glycerine and soap are there to maintain the pH and to make the mix easier on your hands when it dries. I apply 5-10 ml to my hands and let the liquid dry in place.
The corona virus, COVID-19 is already a lot worse than SARS, and it’s likely to get even worse. As of today, there are 78,993 known cases and 2,444 deaths. By comparison, from the first appearance of SARS about December 1 2002, there have been a total of 8439 cases and 813 deaths. It seems the first COVID-19 patient was also about December 1, but the COVID-19 infection moved much faster. Both are viral infections, but it seems the COVID virus is infectious for more days, including days when the patient is asymptomatic. Quarantine is being used to stop COVID-19; it was successful with SARS. As shown below, by July 2003 SARS had stopped, essentially. I don’t think COVID-19 will stop so easily.
The process of SARS, worldwide; a dramatic rise and it’s over by July 2003. Source: Int J Health Geogr. 2004; 3: 2. Published online 2004 Jan 28. doi: 10.1186/1476-072X-3-2.
We see that COVID-19 started in November, like SARS, but we already have 10 times more cases than the SARS total, and 150 times more than we had at this time during the SARS epidemic. If the disease stops in July, as with SARS, we should expect to see about a total of 150 times the current number of cases: about 12 million cases by July 2020. Assuming a death rate of 2.5%, that suggests 1/4 million dead. This is a best case scenario, and it’s not good. It’s about as bad as the Hong Kong flu pandemic of 1968-69, a pandemic that killed 60,000 approximately in the US, and which remains with us, somewhat today. By the summer of 69, the spreading rate R° (R-naught) fell below 1 for and the disease began to die out, a process I discussed previously regarding measles and the atom bomb, but the disease re-emerged, less infectious the next winter and the next. A good quarantine is essential to make this best option happen, but I don’t believe the Chinese have a good-enough quarantine.
Several things suggest that the Chinese will not be able to stop this disease, and thus that the spread of COVID-19 will be worse than that of the HK flu and much worse than SARS. For one, both those disease centered in Hong Kong, a free, modern country, with resources to spend, and a willingness to trust its citizens. In fighting SARS, HK passed out germ masks — as many as anyone needed, and posted maps of infection showing places where you can go safely and where you should only go with caution. China is a closed, autocratic country, and it has not treated quarantine this way. Little information is available, and there are not enough masks. The few good masks in China go to the police. Health workers are dying. China has rounded up anyone who talks about the disease, or who they think may have the disease. These infected people are locked up with the uninfected in giant dorms, see below. In rooms like this, most of the uninfected will become infected. And, since the disease is deadly, many people try to hide their exposure to avoid being rounded up. In over 80% of COVID cases the symptoms are mild, and somewhat over 1% are asymptomatic, so a lot of people will be able to hide. The more people do this, the poorer the chance that the quarantine will work. Given this, I believe that over 10% of Hubei province is already infected, some 1.5 million people, not the 79,000 that China reports.
Wuhan quarantine “living room”. It’s guaranteed to spread the disease as much as it protects the neighbors.
Also making me think that quarantine will not work as well here as with SARS, there is a big difference in R°, the transmission rate. SARS infected some 2000 people over the first 120 days, Dec. 1 to April 1. Assuming a typical infection time of 15 days, that’s 8 cycles. We calculate R° for this stage as the 8th root of 2000, 8√2000 = 2.58. This is, more or less the number in the literature, and it is not that far above 1. To be successful, the SARS quarantine had to reduce the person’s contacts by a factor of 3. With COVID-19, it’s clear that the transmission rate is higher. Assuming the first case was December 1, we see that there were 73,437 cases in only 80. R° is calculated as the 5 1/3 root of 73,437. Based on this, R° = 8.17. It will take a far higher level of quarantine to decrease R° below 1. The only good news here is that COVID-19 appears to be less deadly than SARS. Based on Chinese numbers the death rate appears to be about 2000/73,437, or about 3%, varying with age (see table), but these numbers are overly high. I believe there are a lot more cases. Meanwhile the death rate for SARS was over 9%. For most people infected with COVID-19, the symptoms are mild, like a cold; for another 18% it’s like the flu. A better estimate for the death rate of COVID-19 is 0.5-1%, less deadly than the Spanish flu of 1918. The death rate on the Diamond Princess was 3/600 = 0.5%, with 24% infected.
The elderly are particularly vulnerable. It’s not clear why.
Backing up my value of R°, consider the case of the first Briton to contact the disease. As reported by CNN, he got it at conference in Singapore in late January. He left the conference, asymptomatic on January 24, and spent the next 4 days at a French ski resort where he infected one person, a child. On January 28, he flew to England where he infected 8 more before checking himself into a hospital with mild symptoms. That’s nine people infected over 3 weeks. We can expect that schools, factories, and prisons will be even more hospitable to transmission since everyone sits together and eats together. As a worst case extrapolation, assume that 20% of the world population gets this disease. That’s 1.5 billion people including 70 million Americans. A 1% death rate suggests we’ll see 700,000 US deaths, and 15 million world-wide this year. That’s almost as bad as the Spanish flu of 1918. I don’t think things will be that bad, but it might be. The again, it could be worse.
If COVID-19 follows the 1918 flu model, the disease will go into semi-remission in the summer, and will re-emerge in the fall to kill another few hundred thousand Americans in the next fall and winter, and the next after that. Woodrow Wilson got the Spanish Flu in the fall of 1918, after it had passed through much of the US, and it nearly killed him. COVID-19 could continue to rampage every year until a sufficient fraction of the population is immune or a vaccine is developed. In this scenario, quarantine will have no long-term effect. My sense is that quarantine and vaccine will work enough in the US to reduce the effect of COVID-19 to that of the Hong Kong flu (1968), so that the death rate will be only 0.1 – 0.2%. In this scenario, the one I think most likely, the US will experience some 100,000 deaths, that is 0.15% of 20% of the population, mostly among the elderly. Without good quarantine or vaccines, China will lose at least 1% of 20% = about 3 million people. In terms of economics, I expect a slowdown in the US and a major problem in China, North Korea, and related closed societies.
Robert Buxbaum, February 18, 2020. (Updated, Feb. 23, I raised the US death totals, and lowered the totals for China).
While several towns have had problems with lead in their water, the main route for lead entering the bloodstream seems to be from the soil. The lead content in the water can be controlled by chemical means that I reviewed recently. Lead in the soil can not be controlled. The average concentration of lead in US water is less than 1 ppb, with 15 ppb as the legal limit. According to the US geological survey, of lead in the soil, 2014., the average concentration of lead in US soil is about 20 ppm. That’s more than 1000 times the legal limit for drinking water, and more than 20,000 times the typical water concentration. Lead is associated with a variety of health problems, including development problems in children, and 20 ppm is certainly a dangerous level. Here are the symtoms of lead poisoning.
Several areas have deadly concentrations of lead and other heavy metals. Central Colorado, Kansas, Washington, and Nevada is particularly indicated. These areas are associated with mining towns with names like Leadville, Telluride, Silverton, Radium, or Galena. If you live in an areas of high lead, you should probably not grow a vegetable garden, nor by produce at the local farmer’s market. Even outside of these towns, it’s a good idea to wash your vegetables to avoid eating the dirt attached. There are hardly any areas of the US where the dust contains less than 1000 times the lead level allowed for water.
Lead content of US soils, from the US geological survey of soils, 2014. Michigan doesn’t look half bad.
Breathing the dust near high-lead towns is a problem too. The soil near Telluride Colorado contains 1010 mg/kg lead, or 0.1%. On a dust-blown day in the area, you could breath several grams of the dust, each containing 1 mg of lead. That’s far more lead than you’d get from 1000 kg of water (1000 liters). Tests of blood lead levels, show they rise significantly in the summer, and drop in the winter. The likely cause is dust: There is more dust in the summer.
Recalled brand of curry powder associated with recent poisoning.
Produce is another route for lead entering the bloodstream. Michigan produce is relatively safe, as the soil contains only about 15 ppm, and levels in produce are generally far smaller than in the soil. Ohio soils contains about three times as much lead, and I’d expect the produce to similarly contain 3 times more lead. That should still be safe if you wash your food before eating. When buying from high-lead states, like Colorado and Washington, you might want to avoid produce that concentrates heavy metals. According Michigan State University’s outreach program, those are leafy and root vegetables including mustard, carrots, radishes, potatoes, lettuce, spices, and collard. Fruits do not concentrate metals, and you should be able to buy them anywhere. (I’d still avoid Leadville, Telluride, Radium, etc.). Spices tend to be particularly bad routes for heavy metal poisoning. Spices imported from India and Soviet Georgia have been observed to have as much as 1-2% lead and heavy metal content; saffron, curry and fenugreek among the worst. A recent outbreak of lead poisoning in Oakland county, MI in 2018 was associated with the brand of curry powder shown at left. It was imported from India.
Marijuana tends to be grown in metal polluted soil because it tolerates soil that is too polluted fro most other produce. The marijuana plant concentrates the lead into the leaves and buds, and smoking sends it to the lungs. While tobacco smoking is bad, tobacco leaves are washed and the tobacco products are regulated and tested for lead and other heavy metals. If you choose to smoke cigarettes, I’d suggest you chose brands that are low in lead. Here is an article comparing the lead levels of various brands. . Better yet, I’s suggest that you vape. There are several advantages of vaping relative to smoking the leaf directly. One of them is that the lead is removed in the process of making concentrate.
Some states test the lead content of marijuana; Michigans and Colorado do not, and even in products that are tested, there have been scandals that the labs under-report metal levels to help keep tainted products on the shelves. There is also a sense that the high cost encourages importers to add lead dust deliberately to increase the apparent density. I would encourage the customer to buy vape or tested products, only.
Two years ago I wrote about how to climb a ladder safely without fear. This fellow has no fear and has done the opposite. This fellow has chosen to put a ladder on a table to reach higher than he could otherwise. That table is on another table. At first things are going pretty well, but somewhere about ten steps up the ladder there is disaster. A ladder that held steadily, slips to the edge of the table, and then the table tips over. It’s just physics: the higher he climbs on the ladder the more the horizontal force. Eventually, the force is enough to move the table. He could have got up safely if he moved the tables closer to the wall or if he moved the ladder bottom further to the right on the top table. Either activity would have decreased the slip force, and thus the tendency for the table to tip.
Perhaps the following analysis will help. Lets assume that the ladder is 12.5′ long and sits against a ten foot ledge, with a base 7.5′ away from the wall. Now lets consider the torque and force balance at the bottom of the ladder. Torque is measured in foot-pounds, that is by the rotational product of force and distance. As the fellow climbs the ladder, his weight moves further to the right. This would increase the tendency for the ladder to rotate, but any rotation tendency is matched by force from the ledge. The force of the ledge gets higher the further up the ladder he goes. Let’s assume the ladder weighs 60 lbs and the fellow weighs 240 pounds. When the fellow has gone up ten feet up, he has moved over to the right by 7.5 feet, as the diagram shows. The weight of the man and the ladder produces a rotation torque on the bottom of 60 x 3.75 + 240 x 7.5 = 1925 foot pounds. This torque is combatted by a force of 1926 foot pounds provided by the ledge. Since the ladder is 12.5 feet long the force of the ledge is 1925/12.5 = 154 pounds, normal to the ladder. The effect of this 154 lbs of normal force is to push the ladder to the left by 123.2 lbs and to lift the ladder by 92.4lbs. It is this 123.2 pounds of sideways push force that will cause the ladder to slip.
The slip resistance at the bottom of the ladder equals the net weight times a coefficient of friction. The net weight here equals 60+240-92.4 = 217.6 lbs. Now lets assume that the coefficient of friction is 0.5. We’d find that the maximum friction force, the force available to stop a slip is 217.6 x 0.5 = 108.8 lbs. This is not equal to the horizontal push to prevent rotation, 123.2 lbs. The net result, depending on how you loot at things, is either that the ladder rotates to the right, or that the ladder slips to the left. It keeps slipping till, somewhere near the end of the table, the table tips over.
Force balance of man on ladder. Based on this, I will go through the slippage math in gruesome detail.
I occasionally do this sort of detailed physics; you might as well understand what you see in enough detail to be able to calculate what will happen. One take home from here is that it pays to have a ladder with rubber feet (my ladders do). That adds to the coefficient of friction at the bottom.